1. CHEMICAL PRODUCT IDENTIFICATION:

PRODUCT NAME: TEMPO SC Ultra Insecticide
PRODUCT CODE: 21648
CHEMICAL FAMILY: Pyrethroid Insecticide
CHEMICAL NAME: Cyano(4-fluoro-3-phenoxyphenyl)methyl 3-(2,2-dichloroethenyl)-2,2-dimethylcyclopropanecarboxylate
SYNONYMS: beta-cyfluthrin
FORMULA: C22 H18 Cl2 F N O3

2. COMPOSITION/INFORMATION ON INGREDIENTS:

<table>
<thead>
<tr>
<th>INGREDIENT NAME /CAS NUMBER</th>
<th>EXPOSURE LIMITS</th>
<th>CONCENTRATION (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>FCR 4545 Technical (beta-cyfluthrin)</td>
<td>OSHA : Not Established</td>
<td>11.8 %</td>
</tr>
<tr>
<td>68359-37-5</td>
<td>ACGIH: Not Established</td>
<td>1.3 %</td>
</tr>
</tbody>
</table>

Specific chemical identity is withheld as a trade secret.

3. HAZARDS IDENTIFICATION:

EMERGENCY OVERVIEW

Color: Beige Form: Liquid; Off-white to beige viscous liquid suspension
Odor: Chalky Harmful if inhaled; Harmful if absorbed through skin; Causes eye irritation.

POTENTIAL HEALTH EFFECTS:

ROUTE(S) OF ENTRY: Inhalation; Skin Contact; Skin Absorption; Eye Contact

HUMAN EFFECTS AND SYMPTOMS OF OVEREXPOSURE:

ACUTE EFFECTS OF EXPOSURE: Skin and mucous membrane irritation may occur from contact with the product and produce symptoms such as itching, stinging, skin reddening or rash. Paresthesia (a tingling or burning sensation on the surface of the skin) may also result from skin contact. These are frequently reported symptoms associated with sufficient dermal exposure to alpha-cyano (Type II) synthetic pyrethroids and normally subside without treatment within 24 hours. The onset of these symptoms usually occurs 2-12 hours after exposure. The effects are temporary and are reversible. Based on the EPA Toxicity Category criteria, this material is mildly toxic by the oral and dermal routes of exposure. In addition, animal studies have shown that it can cause mild irritation to the conjunctiva of the eye with all irritation resolving within 7 days.

CHRONIC EFFECTS OF EXPOSURE: Based on animal studies, no adverse effects or symptoms would be expected from chronic exposure to this material.

CARCINOGENICITY: This product is not listed by NTP, IARC or regulated as a carcinogen by OSHA.

4. FIRST AID MEASURES:

FIRST AID FOR EYES: Hold eyelids open and flush with copious amounts of water for 15 minutes. Call a physician if irritation develops or persists after flushing.

FIRST AID FOR SKIN: Remove contaminated clothing immediately. Wash skin with soap and water, preferably preceded by a waterless hand cleaner. Get medical attention if irritation develops or persists. If signs of intoxication (poisoning) occur, get medical attention immediately.

FIRST AID FOR INHALATION: If a person is overcome by excessive exposures to aerosols or vapors of this material, remove to fresh air or uncontaminated area. If not breathing, give artificial respiration, preferably mouth-to-mouth. Get medical attention as soon as possible.

FIRST AID FOR INGESTION: If ingestion is suspected, call a physician or poison control center. Drink one or two glasses of water and induce vomiting by touching back of throat with finger, or, if available, by administering syrup of ipecac. If syrup of ipecac is available, administer 1 tablespoonful (15 mL) of syrup of ipecac followed by 1 to 2 glasses of water. If vomiting does not occur within 20 minutes, repeat the dose once. Do not induce vomiting or give anything by mouth to an unconscious person.

NOTE TO PHYSICIAN: ANTIDOTE: No specific antidote is available. Treat victim symptomatically. Published data indicate vitamin E acetate can prevent and/or mitigate symptoms of paresthesia caused by synthetic pyrethroids. In case of poisoning, it is also requested that Bayer Corp., Agriculture Division, Kansas City, Missouri, be notified. Telephone: 1-800-414-0244

5. FIRE FIGHTING MEASURES:

FLASH POINT: Greater than 200 °F (93 °C)

EXTINGUISHING MEDIA: Water; Foam; Dry Chemical

SPECIAL FIRE FIGHTING PROCEDURES: Keep out of smoke. Cool exposed containers with water spray. Fight fire from upwind position. Use self-contained breathing equipment. Contain runoff to prevent entry into sewers or waterways. Equipment or materials involved in pesticide fires may become contaminated.
6. ACCIDENTAL RELEASE MEASURES:

SPILL OR LEAK PROCEDURES: Isolate area and keep unauthorized people away. Do not walk through spilled material. Avoid breathing vapors and skin contact. Remove sources of ignition if combustible or flammable vapors may be present and ventilate area. Wear proper protective equipment. Dike contaminated area with absorbent granules, soil, sand, etc. If large spill, material should be recovered. Small spills can be absorbed with absorbent granules, spill control pads, or any absorbent material. Carefully sweep up absorbed spilled material. Place in covered container for reuse or disposal. Scour contaminated area with soap and water. Use dry absorbent materials such as clay granules to absorb and collect wash solution for proper disposal. Contaminated soil may have to be removed and disposed. Do not allow material to enter streams, sewers, or other waterways or contact vegetation.

7. HANDLING AND STORAGE:

STORAGE TEMPERATURE(MIN/MAX): 0 °F/30 day avg. not to exceed 100 °F

SHELF LIFE: Time/temperature-dependent. Contact Bayer for specific information.

SPECIAL SENSITIVITY: Not established

HANDLING/SENSITIVITY: Store in a cool, dry area designated specifically for pesticides.

8. PERSONAL PROTECTION:

EYE PROTECTION REQUIREMENTS: Goggles should be used to prevent liquid from getting into eyes.

SKIN PROTECTION REQUIREMENTS: Avoid skin contact. Wear long sleeves and trousers.

HAND PROTECTION REQUIREMENTS: Chemical-resistant gloves such as neoprene

VENTILATION REQUIREMENTS: Control exposure levels through the use of general and local exhaust ventilation.

RESPIRATOR REQUIREMENTS: When respiratory protection is necessary under the conditions of use, wear a NIOSH-approved organic vapor respirator with dust and mist filter.

ADDITIONAL PROTECTIVE MEASURES: Clean water and soap should be available for washing in case of eye or skin contamination. Waterless hand cleaner use is often more effective than soap and water. Sensitive areas of the skin and mucous membranes can become contaminated indirectly. Educate and train employees in safe use of the product. Follow all label instructions. Launder clothing separately after use. Wash thoroughly after handling.

9. PHYSICAL AND CHEMICAL PROPERTIES:

PHYSICAL FORM: Liquid

APPEARANCE: Off-white to beige viscous liquid suspension

COLOR: Beige

ODOR: Chalky

MOLECULAR WEIGHT: 434.3 (for beta-cyfluthrin)

PH: 7-8

BOILING POINT: Not established

MELTING/FREEZING POINT: Approx. 20 °F

VISCOSITY: 1060 cps @ 23 °C

SOLUBILITY IN WATER: Not established

SPECIFIC GRAVITY: 1.06 @ 20 °C/20 °C

BULK DENSITY: Not established

VAPOR PRESSURE: 7.2 x 10-9 mm Hg @ 20 °C (for beta-cyfluthrin)

10. STABILITY AND REACTIVITY:

STABILITY: This is a stable material.

HAZARDOUS POLYMERIZATION: Will not occur.

INCOMPATIBILITIES: Alkaline media; reacts with methanol; incompatible with many disinfectants.

INSTABILITY CONDITIONS: Not established

DECOMPOSITION PRODUCTS: Not established

11. TOXICOLOGICAL INFORMATION:

ACUTE TOXICITY:

ORAL LD50: Male rat: 960 mg/kg -- Female rat: 1150 mg/kg

DERMAL LD50: Male and Female Rat: >2000 mg/kg

INHALATION LC50: 4 hr exposure to Liquid Aerosol: Male and Female Rat: >1.72 mg/L (analytical) – 1 hr exposure to Liquid Aerosol (extrapolated from 4 hr): Male and Female Rat: >6.88 mg/L (analytical)

EYE EFFECTS: Rabbit: Mild irritation to the conjunctiva was observed with irritation cleared within 7 days post-treatment.

SKIN EFFECTS: Rabbit: Not a dermal irritant

SENSITIZATION: Guinea pig: Not a dermal sensitizer

SUBCHRONIC TOXICITY:

FCR 4545: In a 13 week dog study, FCR 4545 was administered at dietary concentrations of 10, 60 or 360 ppm. Effects included vomiting and diarrhea after feeding, decreased body weight gain, and motor disturbances in the hind limbs. The observed effect-level (NOEL) was 60 ppm. In a 13 week study using rats, FCR 4545 was administered at dietary concentrations of 30, 125 or 500 ppm. Effects included reduced body weight gains and feed consumption, uncoordinated gait, and skin injuries of the neck and head from excessive preening due to the local irritant effect of the test material. The NOEL was 125 ppm. In a 4 week inhalation study, rats were exposed to FCR 4545 at liquid aerosol concentrations of 0.2, 2.7 or 23.5 mg/m3. Effects observed included ungroomed fur, piloerection, hyper- and hypoactivity, reduced body weight gains, reduced organ weights (thymus and spleen), and hematological changes. The NOEL was 0.2 mg/m3 based on decreased body weight gains.

CYFLUTHRIN: In a 3 week dermal toxicity study, cyfluthrin was administered to rats for 6 hours/day at dose levels of 100, 340 or 1000 mg/kg. Animals received a total of 17-18 applications in a period of 22-23 days. An additional control and high-dose group were treated and maintained for 14-15 days following treatment so as to ascertain the extent of recovery. Effects observed included reduced food consumption, red nasal discharge, urine stains, and findings at the dose site (scabbing, crusty, discolored and raised zones). Histologically, epidermal and dermal alterations in treated skin were observed in animals of the mid- and high-dose groups. Similar, but slightly less severe microscopic alterations were also observed in the high-dose recovery group. The overall NOEL was 100 mg/kg. In a 13 week inhalation study, rats were exposed to cyfluthrin at aerosol concentrations of 0.09, 0.71 or 4.51 mg/m3 for 6 hours/day, 5 days/week. The NOEL was 0.09 mg/m3 based on reduced body weight gains.

CHRONIC TOXICITY:

Cyfluthrin has been investigated in chronic feeding studies using two different strains of rats. In each study, cyfluthrin was administered for 2 years at dietary concentrations ranging from 50 to 450 ppm. Body weight gains were decreased at concentrations of 150 ppm and greater. Changes in clinical chemistries occurred at 450 ppm. In one of the studies, histopathology revealed a numerical increase in mammary gland adenocarcinomas at 450 ppm. This finding was not statistically significant when compared to the controls and is not considered to be compound-
TOXICOLOGICAL INFORMATION continued:
related. In each study, the overall NOEL was 50 ppm based on decreased body weight gains. In a 1 year feeding study, dogs were administered cyfluthrin at dietary concentrations of 50, 100, 360 or 650 ppm. Beginning on week 8, the high dose was reduced to 500 ppm for the remainder of the study due to severe clinical neurological symptoms. Body weights were decreased for animals of the high-dose. Neurological findings (gait abnormalities and postural reaction deficits) were observed at doses of 360 and greater. The NOEL was 100 ppm.

CARCINOGENICITY:
Cyfluthrin was investigated for carcinogenicity in chronic studies using rats and mice at maximum levels of 450 and 800 ppm, respectively. There was no evidence of a carcinogenic potential observed in either species.

MUTAGENICITY:
In vitro and in vivo mutagenicity studies have been conducted on BAY FCR 4545 technical, all of which are negative. Numerous in vitro and in vivo mutagenicity studies have been conducted on cyfluthrin, all of which are negative.

DEVELOPMENTAL TOXICITY:

FCR 4545: In a developmental toxicity study, Bay FCR 4545 technical was administered orally to rats during gestation at doses of 3, 10 or 40 mg/kg. At the lethal and maternally toxic dose of 40 mg/kg, there was a decrease in fetal body weights and an increased incidence of skeletal findings. The NOELs for maternal and developmental toxicity were 3 and 10 mg/kg, respectively.

CYFLUTHRIN: In developmental toxicity studies using rats, cyfluthrin was administered during gestation by oral gavage at doses ranging from 1 to 30 mg/kg. The overall NOEL from these studies for maternal toxicity was 3 mg/kg. No developmental effects were observed at any of the doses tested. In each study, the NOEL for developmental toxicity was equivalent to the highest dose tested. The NOELs for developmental toxicity for the initial study and the subsequent study were 30 and 10 mg/kg, respectively. Rabbits were administered cyfluthrin during gestation by oral gavage at doses ranging from 5 to 180 mg/kg. At maternally toxic levels, there was an increased incidence of post-implantation losses. The overall NOEL derived from these studies for both maternal and developmental toxicity was 20 mg/kg. In an inhalation study, rats were exposed during gestation to cyfluthrin at aerosol concentrations of 0.46, 2.55 or 11.9 mg/m3 for 6 hours/day. NOELs for maternal and developmental toxicity were less than 0.46 and 0.46 mg/m3, respectively.

REPRODUCTION:
In a reproduction study, cyfluthrin was administered to rats for 3 generations at dietary concentrations of 50, 150 and 450 ppm. Reproductive effects observed at parentally toxic levels included reductions in viability, lactation, litter size, feed consumption, and pup birth weights and body weight gains. Coarse tremors were observed in some offspring at 450 ppm. The NOEL for both parental and reproductive effects was 50 ppm. In another reproduction study, cyfluthrin was administered to rats for 2 generations at dietary concentrations of 50, 125 or 400 ppm. Coarse tremors occurring in conjunction with parental toxicity were observed in the offspring in the mid- and high-dose groups. Based on this finding, the neonatal NOEL was 50 ppm. The NOELs for parental and reproductive toxicity were 50 and 400 ppm, respectively.

NEUROTOXICITY:
Numerous neurotoxicity studies have been conducted on cyfluthrin. Oral gavage studies using hens have indicated that at extremely high dose levels (5000 mg/kg), minimal nerve damage occurs. When rats were administered cyfluthrin daily at oral doses of 40 to 80 mg/kg for 14 days, minimal nerve effects were seen. These effects were completely reversible within a 3 month recovery period. In dermal and inhalation studies which are relevant to field exposure, there was no evidence of delayed neurotoxicity in hens. In a special investigative study, litters of neonatal mice (10 days of age) and their mothers were exposed to aerosol concentrations of 5, 15, or 50 mg/m3 for 6.3 hours/day for 7 successive days. Motor activity was measured in the offspring at 4 months of age (approximately 3.5 months post-exposure). At 50 mg/m3, all of the offspring died or were sacrificed in a moribund state following the first exposure. Mortalities were not observed at any of the other levels. Clinical symptoms were observed immediately after exposure in young mice at 15 mg/m3, and included decreased motility, temporary scratching, and tonic convulsions. There was an increase in motor activity in mice at 15 mg/m3. Histopathological investigations did not reveal any treatment-related findings in mice at the age of 4 months.

12. ECOLOGICAL INFORMATION:
This product is extremely toxic to fish and aquatic invertebrates, and is highly toxic to bees. Bayer will provide a summary of specific data upon written request. As with any pesticide, this product should be used according to label directions and should be kept out of streams, lakes and other aquatic habitats of concern. In event of a spill emergency, call 1-800-414-0244.

13. DISPOSAL CONSIDERATIONS

WASTE DISPOSAL METHOD: Follow container label instructions for disposal of wastes generated during use in compliance with the FIFRA product label. In other situations, bury in an EPA approved landfill or burn in an incinerator approved for pesticide destruction.

EMPTY CONTAINER PRECAUTIONS: Do not reuse container without written permission and instructions from Bayer. Empty, clean and dispose in accordance with state and local laws.

14. TRANSPORTATION INFORMATION:

TECHNICAL SHIPPING NAME: beta-Cyfluthrin

FREIGHT CLASS PACKAGE: Insecticides, NOI, NMFC 102100

PRODUCT LABEL: Not Noted

DOT (DOMESTIC SURFACE):

HAZARD CLASS OR DIVISION: Non-Regulated

It is not expected that a mist or vapor hazard would exist from the normal transportation of this liquid substance.

IMO / IMDG CODE (OCEAN):

HAZARD CLASS DIVISION NUMBER: Non-Regulated

ICAO / IATA (AIR):

HAZARD CLASS DIVISION NUMBER: Non-Regulated

15. REGULATORY INFORMATION:

OSHA STATUS: This product is hazardous under the criteria of the Federal OSHA Hazard Communication Standard 29 CFR 1910.1200.

TSCA STATUS: This product is exempt from TSCA Regulation under FIFRA Section 3 (2)(B)(ii) when used as a pesticide.

CERCLA REPORTABLE QUANTITY: No components listed.

SARA TITLE III:

SECTION 302 EXTREMELY HAZARDOUS SUBSTANCES: No components listed.

SECTION 311/312 HAZARD CATEGORIES: Immediate Health Hazard

SECTION 313 TOXIC CHEMICALS: beta-Cyfluthrin (11.8%) - CAS # 68359-37-5

RCRA STATUS: If discarded in its purchased form, this product would not be a hazardous waste either by listing or by characteristic. However, under RCRA, it is the responsibility of the product user to determine at the time of disposal, whether a material containing the product or derived from the product should be classified as a hazardous waste. (40 CFR 261.20-24)
NFPA 704M RATINGS:

<table>
<thead>
<tr>
<th>Health</th>
<th>Flammability</th>
<th>Reactivity</th>
<th>Other</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Bayer’s method of hazard communication is comprised of Product Labels and Material Safety Data Sheets. NFPA ratings are provided by Bayer as a customer service.

REASON FOR ISSUE: Revise Section 11 (Inhalation LC50); Section 14 (Transportation)

PREPARED BY: V. C. Standart
APPROVED BY: D. C. Eberhart
TITLE: Product Safety Manager
APPROVAL DATE: 12/08/1998
SUPERSEDES DATE: 05/21/1998
MSDS NUMBER: 29752

This information is furnished without warranty, expressed or implied, except that it is accurate to the best knowledge of Bayer Corporation. The data on this sheet relates only to the specific material designated herein. Bayer Corporation assumes no legal responsibility for use or reliance upon these data.